之前我们写过一个冒泡排序,并且优化了它,但是他仅仅只能做升序,如果我们需要让他降序会有几种办法?
1.修改排序代码
2.回调函数
如果是第一种我们只需要 修改>
变成<
即可降序
#include<stdio.h>
#define N 6
int main()
{
int arr[6] = { 1,6,2,5,0,4 };
int temp;
for (size_t i = 0; i < N; i++)
{
for (size_t j = 0; j < N-1-i; j++)
{
if (arr[j]<arr[j+1])
{
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
for (size_t k = 0; k < 6; k++)
{
printf("%d", arr[k]);
}
}
运行截图
如果我们不想动原函数,这时候我们就需要构建自己的比较函数逻辑 我希望我们能给排序函数传入一个参数 让他来改变排序的逻辑 很优雅。当然我们会用回调函数,不仅仅是参数传入一个值
#include<stdio.h>
#define N 6
int compare(int a, int b)
{
if (a>b)
{
return -1;
}
else
{
return 1;
}
}
void bubblesort(int* arr, int n, int (*p)(int, int))
{
int temp;
for (size_t i = 0; i < N; i++)
{
for (size_t j = 0; j < N - 1 - i; j++)
{
if (compare(arr[j], arr[j+1])>0)
{
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
int main()
{
int arry[6] = { 1,6,2,5,0,4 };
bubblesort(arry, 6, compare);
for (size_t k = 0; k < 6; k++)
{
printf("%d", arry[k]);
}
}
我们定义了一个回调函数 如果需要正序排列就返回1 如果需要降序排列就返回-1
逻辑上怎么理解,原来我们是判断如果a>b则交换ab位置否则不交换 这里我们通过是否>0,如果大于0则a>b,交换,实际上是一个意思,只不过这里用回调函数实现
我们也可以通过微软自带的qsort函数进行理解。
void qsort(
void *base,
size_t number,
size_t width,
int (__cdecl *compare )(const void *, const void *)
);
我这里主要介绍第四个参数 qsort
函数是通用排序函数 它可以排序任意类型的参数 只要你给定排序的逻辑 我们现在给定一些包括正整数和负整数来对他们进行排序。
排序 1,-8,-22,-31,5,56
先明确我们比较函数的逻辑 作差可以比较出两个数的大小把比如-22和-31作差结果是正数 所以-22>-31 即-22的排名高 将以升序排列 反之 B-A会以降序排列
#include<stdio.h>
#include<stdlib.h>
#define N 6
int compare(int a, int b)
{
if (a>b)
{
return -1;
}
else
{
return 1;
}
}
int compare2(const void* arg1, const void* arg2)
{
int a = *((int*)arg1);
int b = *((int*)arg2);
return a - b;
}
void bubblesort(int* arr, int n, int (*p)(int, int))
{
int temp;
for (size_t i = 0; i < N; i++)
{
for (size_t j = 0; j < N - 1 - i; j++)
{
if (compare(arr[j], arr[j+1])>0)
{
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
int main()
{
int arry[6] = { 1,6,2,5,0,4 };
int arry1[6] = { 1,-8,-22,-31,5,56};
//bubblesort(arry, 6, compare);
qsort(arry1, 6, sizeof(int), compare2);
for (size_t k = 0; k < 6; k++)
{
printf("%d ", arry1[k]);
}
}
以上就是回调函数的运用
网站标题:CV鼻祖洋芋
原创文章,作者:locus,如若转载,请注明出处:https://blog.cvpotato.cn/forward-code/c-2/107/
本博客所发布的内容,部分为原创文章,转载注明来源,网络转载文章如有侵权请联系站长!